Hamiltonian and distance replica exchange method studies of Met-enkephalin.
نویسندگان
چکیده
The conformational states of the zwitterionic form of the pentapeptide Met-enkephalin were explored with the use of explicit solvent molecular dynamics (MD). The N and C termini are ionized, as appropriate to polar solvent conditions, and consequently, there is a competition between open forms driven by polar solvation of the ammonium and carboxylate groups and closed forms driven by their salt-bridge formation. Normal MD started from an open state does not sample closed conformations. Sampling was enhanced with a distance replica exchange method (DREM) and with a Hamiltonian replica exchange method (HREM). The potential of mean force (PMF) along an end-to-end distance reaction coordinate was obtained with the DREM. The PMF shows a stable salt-bridge state and the presence of a large region of open states, as hypothesized for conformationally promiscuous small opiate peptides. The HREM systems differ by scaling the peptide-peptide and peptide-solvent electrostatic and Lennard-Jones potentials, with the goal of improving the sampling efficiency with a limited number of systems. A small number of systems were found to be sufficient to sample closed and open states. A principal component analysis (PCA) shows that the HREM-generated fluctuations are dominated by the first two principal modes. The first corresponds to the end-to-end reaction coordinate found in the DREM, and the first mode PMF is similar to the DREM PMF. The second mode describes the presence of two conformations, both of which correspond to the salt-bridge state distance. The conformers differ in the values of neighboring psi and phi dihedral angles, since such psi/phi compensation can still produce the same end-to-end distance. The two-dimensional PMF constructed from the first two PCA modes captures most of the significant backbone conformational space of Met-enkephalin.
منابع مشابه
Transition Pathway and Its Free-Energy Profile: A Protocol for Protein Folding Simulations
We propose a protocol that provides a systematic definition of reaction coordinate and related free-energy profile as the function of temperature for the protein-folding simulation. First, using action-derived molecular dynamics (ADMD), we investigate the dynamic folding pathway model of a protein between a fixed extended conformation and a compact conformation. We choose the pathway model to b...
متن کاملReplica-Permutation Method with the Suwa-Todo Algorithm beyond the Replica-Exchange Method.
We propose a new method for molecular dynamics and Monte Carlo simulations, which is referred to as the replica-permutation method (RPM), to realize more efficient sampling than the replica-exchange method (REM). In RPM, not only exchanges between two replicas but also permutations among more than two replicas are performed. Furthermore, instead of the Metropolis algorithm, the Suwa-Todo algori...
متن کاملReplica-exchange method in van der Waals radius space: overcoming steric restrictions for biomolecules.
We present a new type of the Hamiltonian replica-exchange method, where the van der Waals radius parameter and not the temperature is exchanged. By decreasing the van der Waals radii, which control spatial sizes of atoms, this Hamiltonian replica-exchange method overcomes the steric restrictions and energy barriers. Furthermore, the simulation based on this method escapes from the local-minimum...
متن کاملReplica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2).
A small change in the Hamiltonian scaling in Replica Exchange with Solute Tempering (REST) is found to improve its sampling efficiency greatly, especially for the sampling of aqueous protein solutions in which there are large-scale solute conformation changes. Like the original REST (REST1), the new version (which we call REST2) also bypasses the poor scaling with system size of the standard Te...
متن کاملWang-Landau molecular dynamics technique to search for low-energy conformational space of proteins.
Multicanonical molecular dynamics (MD) is a powerful technique for sampling conformations on rugged potential surfaces such as protein. However, it is notoriously difficult to estimate the multicanonical temperature effectively. Wang and Landau developed a convenient method for estimating the density of states based on a multicanonical Monte Carlo method. In their method, the density of states ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 111 42 شماره
صفحات -
تاریخ انتشار 2007